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uations) the discovery of the correct Green function is sometimes easy and some-
times not. Consequently a number of approaches to electrostatic boundary-value
problems have been developed, some of which are only remotel§-eonnected to
the Green function method. In this chapter we will examine three of these special
techniques: (1) the method of images, which is closely related to the use of Green
functions; (2) expansion in orthogonal functions, an approach directly through
the differential equation and rather remote from the direct construction of a
Green function; (3) an introduction to finite element analysis (FEA), a broad
class of numerical methods. A major omission is the use of complex-variable
techniques, including conformal mapping, for the treatment of two-dimensional
problems. The topic is important, but lack of space and the existence of self-
contained discussions elsewhere accounts for its absence. The interested reader
may consult the references cited at the end of the chapter.

Method of Images

The method of images concerns itself with the problem of one or more point
charges in the presence of boundary surfaces, for example, conductors either
grounded or held at fixed potentials. Under favorable conditions it is possible to
infer from the geometry of the situation that a small nuinber of suitably placed
charges of appropriate magnitudes, external to the region of interest, can simu-
late the required boundary conditions. These charges are called image charges,
and the replacement of the actual problem with boundaries by an enlarged region
with image charges but not boundaries is called the method of images. The image
charges must be external to the volume of interest, since their potentials must be
solutions of the Laplace equation inside the volume; the “particular integral”
., solution of the Poisson equation) is provided by the sum of the potentials

f the charges inside the volume.
A simple example is a point charge located in front of an infinite plane con-
uctor at zero potential, as shown in Fig. 2.1. It is clear that this is equivalent to
Jproblem of the original charge and an equal and opposite charge located at
> Mirror-image point behind the plane defined by the position of the conductor.
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Figure 2.1  Solution by method of
images. The original potential problem
is on the left, the equivalent-image
problem on the right.
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2,2 Point Charge in the Presence of a Grounded
Conducting Sphere

As an illustration of the method of images we consider the problem illustrated
in Fig. 2.2 of a point charge g located at y relative to the origin, around which is

centered a grounded conducting sphere of radius a. We seek the potential ®(x) -

such that ®(|x| = a) = 0. By symmetry it is evident that the image charge g’
(assuming that only one image is needed) will lie on the ray from the origin to
the charge g. If we consider the charge g outside the sphere, the image position
y’ will lie inside the sphere. The potential due to the charges g and g’ is:

q/Ame, + 4 M4,

W ==y Ty

1)

We now must try to choose g’ and |y’| such that this potential vanishes at |x| = a.
If n is a unit vector in the direction x, and n’ a unit vector in the direction y, then

qldme, +_4 'ld7ey

ox) = [xn — yn'[ * {xn — y'm’|

2.2

If x is factored out of the first term and y' out of the second, the potential at
x = a becomes:
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Figure 2.2 Conducting sphere of radius
a, with charge g and image charge q'.
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From the form of (2.3) it will be seen that the choices:
9.9 y_a

1 ’

a vy a y
make ®(x = a) = 0, for all possible values of n-n’. Hence the magnitude and
position of the image charge are

a &
'=-=q, y' =— 2.4
q yq y y (24)

We note that, as the charge g is brought closer to the sphere, the image charge
grows in magnitude and moves out from the center of the sphere. When q is just
outside the surface of the sphere, the image charge is equal and opposite in
magnitude and lies just beneath the surface. :

Now that the image charge has been found, we can return to the origina
problem of a charge g outside a grounded conducting sphere and consider various
effects. The actual charge density induced on the surface of the sphere can be

calculated from the normal derivative of & at the surface: o
P q fa 1= ;
o= —¢€ a—x " = _417'a2 <;> ai B 373 (25)
1+=—-2-cosy
Yy Yy

where v is the angle between x and y. This charge density in units of ~g/4ma” is
shown plotted in Fig. 2.3 as a function of y for two values of y/a. The concentra-
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Figure 2.3 Surface-charge density o induced on the grounded sphere of radius z as a
result of the presence of a point charge ¢ located a distance y away from the center of
the sphere. o is plotted in units of —g/4a? as a function of the angular position y away
from the radius to the charge for y = 24, 4a. Inset shows lines of force for y = 2a.
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dF = {6%2¢g)da

Figure 2.4

tion of charge in the direction of the point charge g is evident, especially for
yla = 2. It is easy to show by direct integration that the total induced charge on
the sphere is equal to the magnitude of the image charge, as it must be, according
to Gauss’s law.

The force acting on the charge ¢ can be calculated in different ways. One
(the easiest) way is to write down immediately the force between the charge g
and the image charge g’. The distance between themis y — y’ = y(1 — ahy?).
Hence the attractive foree, according to Coulomb’s law, is:

1 ¢*(a y 2\’ :
= == - = 2.6
w0 ) 26

For large separations the force is an inverse cube law, but close to the sphere it
is proportional to the inverse square of the distance away from the surface of the
sphere.

The alternative method for obtaining the force is to calculate the total force
acting on the surface of the sphere. The force on each element of area da is
(0?/2¢€5) da, where o is given by (2.5), as indicated in Fig. 2.4. But from symmetry
it is clear that only the component parallel to the radius vector from the center
of the sphere to g contributes to the total force. Hence the total force acting on
the sphere (equal and opposite to the force acting on g} is given by the integral:

' a\’ 2\ cOs ¥ a0 @n
-2 (a\(;-2 J :
¥l = e (y) ( yz) ( N )3

— — —CcosYy
V¥ oy

Integration immediately yields (2.6).

The whole discussion has been based on the understanding that the point
charge g is outside the sphere. Actually, the results apply equally for the charge
q inside the sphere. The only change necessary is in the surface-charge density
(2.5), where the normal derivative out of the conductor is now radially inward,
implying a change in sign. The reader may transcribe all the formulas, remem-
bering that now y = a. The angular distributions of surface charge are similar to
those of Fig. 2.3, but the total induced surface charge is evidently equal to —q,
independent of y.

2.3 Point Charge in the Presence of a Charged, Insulated,
Conducting Sphere

In the preceding section we considered the problem of a point charge ¢ near a
grounded sphere and saw that a surface-charge density was induced on the
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sphere. This charge was of total amount ¢’ = —agly, and was distributed over
the surface in such a way as to be in equilibrium under all forces acting.

If we wish to consider the problem of an insulated conducting sphere with
total charge Q in the presence of a point charge g, we can build up the solution
for the potential by linear superposition. In an operational sense, we can imagine
that we start with the grounded conducting sphere (with its charge ¢’ distributed
over its surface). We then disconnect the ground wire and add to the sphere an
amount of charge (Q — ¢q'). This brings the total charge on the sphere up to Q.
To find the potential we merely note that the added charge (Q — ¢’') will dis-
tribute itself uniformly over the surface, since the electrostatic forces due to the
point charge g are already balanced by the charge ¢’. Hence the potential due
to the added charge (Q — g') will be the same as if a point charge of that mag-
nitude were at the origin, at least for points outside the sphere.

The potential is the superposition of (2.1) and the potential of a point charge
(Q — ¢') at the origin:

Q+Eq
1 q aq y
Dx) = — - + 2.8
@ 47y | |x — y| 2 x| (28)
L

The force acting on the charge g can be written down directly from Coulomb’s
law. It is directed along the radius vector to g and has the magnitude:

-l g 9@y’ — @) |y
dmeg ¥ yO* - @y |y
In the limit of y > a, the force reduces to the usual Coulomb’s law for two small
charged bodies. But close to the sphere the force is modified because of the
induced charge distribution on the surface of the sphere. Figure 2.5 shows the
force as a function of distance for various ratios of Q/q. The force is expressed
in units of g%/4mesy* positive (negative) values correspond to a repulsion (at-
traction). If the sphere is charged oppositely to g, or is uncharged, the force is
attractive at all distances. Even if the charge Q is the same sign as g, however,
the force becomes attractive at very close distances. In the limit of Q >> g, the
point of zero force (unstable equilibrium point) is very close to the sphere,
namely, at y = a(1 + 1V/g/Q). Note that the asymptotic value of the force is
attained as soon as the charge g is more than a few radii away from the sphere.
This example exhibits a general property that explains why an excess of
charge on the surface does not immediately leave the surface because of mutual
repulsion of the individual charges. As soon as an element of charge is removed
from the surface, the image force tends to attract it back. If sufficient work is
done, of course, charge can be removed from the surface to infinity. The work
function of a metal is in large part just the work done against the attractive image
force to remove an electron from the surface.

(29)

2.4 Point Charge Near a Conducting Sphere at Fixed Potential

Another problem that can be discussed easily is that of a point charge near a
conducting sphere held at a fixed potential V. The potential is the same as for
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produced by appropriate positive and negative charges at infinity. For example,
if there are two charges *+Q, located at positions z = ¥R, as shown in Fig. 2.6a,
then in a region near the origin whose dimensions are very small compared to R
there is an approximately constant electric field E, = 20Q/4me,R? parallel to the
z axis. In the limit as R, Q — «, with Q/R? constant, this approximation becomes
exact.

If now a conducting sphere of radius a is placed at the origin, the potential
will2 be that due to the charges +0 at ¥R and their images ¥Qa/R at z
*a’/R:

® = Qldre, _ Qldmre,
(r* + R* + 2rR cos )2 (r* + R® — 2rR cos 6)** 2.12
(2.12)
aQl4re, aQl4are,
” > 72 7 2 17
R<r2+%+%coso> R<r2+%—%0059>

where ® has been expressed in terms of the spherical coordinates of the obser-
vation point. In the first two terms R is much larger than r by assumption. Hence
we can expand the radicals after factoring out R Similarly, in the third and

2 fourth terms, we can factor out r2 and then expand. The result is:
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Figure 2.6 Conducting sphere in a uniform electric field by the method of images.
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The second is the potential due to the induced surface-charge density or, equiv-
alently, the image charges. Note that the image charges form a dipole of strength
D = QalR X 2a*R = 4me, Eoa®. The induced surface-charge density is

o= —¢€ ?’_} = 3e,E, cos (2.15)

r=a

We note that the surface integral of this charge density vanishes, so that there is
no difference between a grounded and an insulated sphere.

2.6 Green Function for the Sphere; General Solution
Jor the Potential

In preceding sections the problem of a conducting sphere in tl.le presence qf a
point charge was discussed by the method of images. As mentioned in Sect}on
1.10, the potential due to a unit source and its image (or images), chosen to satisfy
homogeneous boundary conditions, is just the Green function (1.43 or 1.45) ap-
propriate for Dirichlet or Neumann boundary conditions. In G(x, x’) the vaqable
x’ refers to the location P’ of the unit source, while the variable x is the point 7
at which the potential is being evaluated. These coordinates and the sphere are
shown in Fig. 2.7. For Dirichlet boundary conditions on the sphere of radius a
the Green function defined via (1.39) for a unit source and its image is given by
(2.1) with g — 4me, and relations (2.4). Transforming variables appropriately,
we obtain the Green function:

Gx, x) =~ —— - a (2.16)

Ix ~ x|

Figure 2.7
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In terms of spherical coordinates this can be written:

1 1

(* + x? = 2xx’ cos Y2 [y2yr2 ) 2
27— + a° — 2xx’ cosy
a

G(x, x) = 217

where v is the angle between x and x’. The symmetry in the varjables x and x’
is obvious in the form (2.17), as is the condition that G = 0 if either x or x’ is on
the surface of the sphere.

For solution (1.44) of the Poisson equation we need not only G, but also
8G/on'. Remembering that n’ is the unit normal outward from the volume of
interest (i.e., inward along x' toward the origin), we have

L] R )
on’| ..., a(x* + a* — 2ax cos y)*?
[Note that this is essentially the induced surface-charge density (2.3).] Hence the

solution of the Laplace equation outside a sphere with the potential specified on
its surface is, according to (1.44),

(2.18)

a(x? — a%)
(x* + a® — 2ax cos y)*?

where d()' is the element of solid angle at the point (a, ¢, ¢') and cosy =
cos 6 cos 6 + sin @ sin 6’ cos(¢p — ¢'). For the interior problem, the normal
derivative is radially outward, so that the sign of 3G/an’ is opposite to (2.18).
This is equivalent to replacing the factor (x? - %) by (4 — x2) in (2.19). For a
problem with a charge distribution, we must add to (2.19) the appropriate integral
in (1.44), with the Green function (2.17).

<I>(X)=4iw f ®(a, 0", ¢°) a0 (219

2.7 Conducting Sphere with Hemispheres at Different Potentials

As an example of the solution (2.19) for the potential outside a sphere with
prescribed values of potential on its surface, we consider the conducting sphere
of radius 2 made up of two hemispherical shells separated by a small insulating
ring. The hemispheres are kept at different potentials. It will suffice to consider
the potentials as +V, since arbitrary potentials can be handled by superposition
of the solution for a sphere at fixed potential over its whole surface. The insu-
lating ring lies in the z = O plane, as shown in Fig. 2.8, with the upper (lower)
hemisphere at potential +V (—V).

Figure 2.8




